www.chms.ru - вывоз мусора в Жуковском
Читаемые статьи

Читаемые книги

Ссылки


Главная >  Процесс соединения металлических деталей 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [ 17 ] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

высоких температурах процесса, поэтому не всегда эти реакции могут полностью завершаться. С другой стороны, сильно ускоряются процессы затвердевания и кристаллизации металла шва, что существенно отражается на строении (структуре) твердого металла шва, получаемого после сварки, а также околошовной зоны основного металла.

Химический состав, структура и плотность металла шва зависят от состава основного и присадочного металла, характера и состава газов, окружающих жидкий металл, режима сварки и прочих факторов.

Указанные особенности металлургических процессов при сварке затрудняют получение сварных швов высокого качества, особенно для металлов, чувствительных к быстрому нагреву и охлаждению, легко окисляющихся, склонных к образованию пористости, закалочных структур, трещин и других дефектов. Для сварки конструкций из таких металлов приходится применять специальную технологию и режимы, особые присадочные металлы, электроды, электродные покрытия, флюсы, в ряде случаев использовать пред- -варительный и сопутствующий подогрев, а также последующую термическую обработку швов и в некоторых случаях - целых изделий.

§ 2. Основные реакции в зоне сварки

Рассмотрим основные реакции в зоне сварки, характерные для стали, как наиболее распространенного в промышленности металла. Особенности процессов, протекающих при сварке других металлов и сплавов, будут рассматриваться при описании технологии сварки этих сплавов. г

При сварке стали одной из главных задач является получение расплавленного металла, по возможности свободного от примесей кислор9да>-азота, водорода и серы.

Кислород является наноолее вредной примесью, так как окисляет расплавленный металл, образуя химические соединения - окислы.

Если окислы растворимы в жидком металле, то они поглощаются последним, образуя с ним при затвердевании твердый раствор. Нерастворимые окислы выделяются из затвердевшего металла, переходя в шлак. Часть нерастворимых окислов остается в металле шва в виде включений шарообразной формы (так называемых глобул) или, располагаясь по границам зерен, нарушает сцепление их между собой.

С железом кислород образует три окисла!

закись железа по реакции 2 Fe-j-02:j±2 Fe О; окись железа по реакции ЗРе-2бРезО; закись-окись железа по реакции 2Fe-l-l,5 02:Fea03,



При окислении сперва образуется закись железа, которая в дальнейшем при соответствующих условиях (температуре, соотношении кислорода и железа в сварочной ванне) может переходить в окись и закись-окись железа. При окислении железа в процессе сварки основную роль играет закись железа, так как только она способна растворяться в жидком металле.

Установлено, что в чистом расплавленном железе может растворяться до 0,22% кислорода в виде закиси железа, концентрация которой в расплавленном железе может достигать 0,5%. Содержание кислорода в стали (представляющей сплав железа с углеродом) будет меньше, так как растворимость закиси железа в сплаве уменьшается по мере повышения в нем содержания углерода. Когда содержание кислорода в стали достигнет 0,035%, избыточный кислород будет выделяться из раствора в виде закиси-окиси железа и располагаться между зернами металла.

Кислород легко соединяется также с углеродом, марганцем, кремнием и другими элементами, входящими в состав свариваемого металла, электродов, электродных покрытий и флюсов, образуя соответствующие окислы этих элементов.

Окисление элементов при сварке может происходить или в зоне сварочной дуги, где кислород находится в атомарном состоянии и отличается высокой химической активностью, или при взаимодействии их с закисью железа (FeO) в ванне расплавленного металла.

Вследствие окисления содержание некоторых элементов в металле шва может резко уменьшаться, что заметно ухудшает его свойства. Так, например, при сварке голыми электродами количество углерода может уменьшаться в металле шва на 50-0%, а марганца - на 40 -50% по сравнению с их содержанием в электродной проволоке. *---

Присутствие кислорода в металле шва в виде твердого раствора или включений окислов, в первую очередь сказывается на ухудшении механических свойств наплавленного металла: понижаются пределы прочности и текучести, относительное удлинение, ударная вязкость. Кроме того, кислород вредно влияет и на другие свойства металла - снижает стойкость его против коррозии, повышает склонность к старению, делает металл хладноломким и красноломким.

Таким образом, главным словием получения наплавленного металла высокого качества является защита его от окисления кислородом окружающей среды. Это достигается, во-первых, созданием вокруг расплавленного металла защитной среды из газов и шлаков. Однако полностью защитить металл от окисления не удается. Поэтому вторым средством для решения указанной задачи является удаление кислорода из наплавленного металла с помощью химических элементов, обладающих большим сродством к кислороду, чем железо, и образующих окислы, менее растворимые в жидком металле, чем FeO. Этот процесс называется раскис-



л ением и играет очень важную роль при сварке, так как обеспечивает получение чистого, высококачественного металла шва. Благодаря раскислению, а также надежной защите жидкого металла газами и шлаком, образуемыми при расплавлении покрытия электрода и флюса, содержание кислорода в металле шва очень невелико и практически составляет 0,005-,057%. В электродной проволоке содержание кислорода не превышает 0,01%.

Реакции окисления и раскисления обусловлены одним и тем же химическим процессом, но протекающим лишь в противоположных направлениях. Этот процесс можно выразить следующей общей формулой:

mMe-f О.МеЛ.

где m - число молекул металла (Me) или другого элемента, участвующего в реакции с кислородом; п - число молекул кислорода (Og), пошедшего-на окисленге или содержавшегося в окисле. Стрелками указано направление реакции: вправо - окисление, влево - раскисление (восстановление металла из окисла). При определенных соотношениях металла и кислорода вся система может находиться в состоянии химического равновесия при данной температуре и давлении, т. е. процессы окисления или восстановления протекать не будут. Тогда в данном объеме вещества будут находиться как чистый металл, так и его окисел. Такое состояние характеризуется некоторой величиной, называемой константой* равновесия К. Эта величина равна:

[%Ме] [0,]-¥

[%Ме 0 ]

Берутся весовые проценты концентраций взаимодействующих веществ. Числитель представляет собой произведение концентраций веществ, вступающих в реакцию, а знаменатель - концентрацию продуктов реакции. Для каждого вещества значения К, соответствующие равновесному состоянию системы при различных давлениях и температурах, определены опытным путем и даются в виде таблиц или графиков. Чем больше действительная величина К отличается от равновесной, вычисленной для той же температуры и давления, тем больше будет скорость реакции. Если отношение концентраций веществ в правой части формулы больше равновесного значения /С, то реакция пойдет вправо и произойдет окисление элемента Me. При обратном соотношении процесс идет влево и происходит раскисление (восстановление элемента Me из окисла). С повьпиением температуры скорость этих реакций возрастает.

* От латинского слова констант - постоянный.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [ 17 ] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148


Чем хороши многотопливные котлы?



Нетрадиционное отопление



Детище отечественной Оборонки



Что такое автономное индивидуальное отопление?



Использование тепловых насосов



Эффективное теплоснабжение для больших помещений



Когда удобно применять теплые полы
© 1998 - 2018 www.300mm.ru.
При копировании материала обязательно наличие обратных ссылок.
Яндекс.Метрика